If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2=4800
We move all terms to the left:
8x^2-(4800)=0
a = 8; b = 0; c = -4800;
Δ = b2-4ac
Δ = 02-4·8·(-4800)
Δ = 153600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{153600}=\sqrt{25600*6}=\sqrt{25600}*\sqrt{6}=160\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160\sqrt{6}}{2*8}=\frac{0-160\sqrt{6}}{16} =-\frac{160\sqrt{6}}{16} =-10\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160\sqrt{6}}{2*8}=\frac{0+160\sqrt{6}}{16} =\frac{160\sqrt{6}}{16} =10\sqrt{6} $
| (2x)x(x)=242 | | 22x+15(-x+11)=228 | | s/4+48=52 | | 15x+22(-x+11)=228 | | 5−4t=-5t | | c-86/2=-5 | | -9p−7=-8p | | c-86/2=5 | | 22-4n=14 | | p-88/2=5 | | y−13=35 | | 76=-4(d+38) | | 3/4x-2/5=1/1 | | c/4-4=1 | | 10+8n=26 | | 6(y-86)=6 | | 25/5+h=30.76/3+h | | -14=-2(m-89) | | -5/11h-7/9=2/9 | | p+18/4=6 | | -16-2n=1n-11 | | c/6-26=18 | | 6/8-2/3+x=1/3 | | 2x-5+x+15=180 | | 365.2421891=365x | | 16.33x-34=4x+65 | | 22=3(x+8)-5x | | 1/5d+2/3d=5/3 | | b+8÷-8=2 | | 72=6(y+9) | | 5x/12=7+7x/4 | | 2(-3x+4)=3x-9 |